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Low amplitude, high frequency vibrations can induce in fluids under weightlessness behaviors that resemble
those induced by gravity. Supercritical fluids �above their gas-liquid critical point� are used in the space
industry and also display universal behavior. They are particularly sensitive to gravity effects. When submitted
to vibration �typically 0.1 to 0.5 mm amplitude, 10 to 50 Hz frequency�, a Rayleigh-Bénard-like instability is
observed in experiments with H2 and CO2 under weightlessness. The thermal boundary layer created during a
temperature change displays periodic fingering perpendicular to the vibration direction. A systematic two-
dimensional numerical study by the finite volume method is performed in CO2 that shows that the fingering
pattern is due to a thermovibrational instability, characterized by a vibrational Rayleigh number. The simula-
tion and a simplified dimensional analysis show that the fingering wavelength and the vibrational Rayleigh
number decrease as a power law with the distance in temperature to the critical point. However, due to the
oversimplification of the analysis, the exponent in the simulation is found to be somewhat different than in the
theoretical approach, calling for a more complete investigation of the problem.
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I. INTRODUCTION

In space, in the absence of gravity effects, the behavior of
fluids is markedly different than on Earth. The management
of fluids in such conditions �flow control, heat exchange,
etc.� is often a challenge and “artificial” gravity can be
looked for. It happens that fluids submitted to vibrations of
“high” frequency, e.g., frequency larger than the inverse hy-
drodynamics times �typically thermal diffusion and viscous
dissipation times� and “low” amplitude �e.g., amplitudes
smaller than the sample size� exhibit convective flows that
are similar to buoyancy flows under earth gravity.

In this study, supercritical fluids �fluids above their critical
point� are considered. The interest of studying fluids in such
conditions is manifold. First, supercritical oxygen, hydrogen,
and helium are already used in the space industry. Second,
their high compressibility and slow dynamics �“critical slow-
ing down”� emphasize the behavior encountered in regular
fluids. Third, fluids in such conditions obey universal, scaled
power laws, valid for all fluids �1,2�. When these fluids are
submitted to vibrations under weightlessness, it has been ob-
served a number of intriguing phenomena, such as the layer-
ing of the gas-liquid phases �3�, the acceleration of the gas-
liquid phase transition dynamics �4,5�, and Rayleigh-Bénard-
like instabilities �6,7�.

More specifically—and this is the object of the present
study—a destabilization of thermal boundary layers was sur-
prisingly observed in several weightless experiments when
the fluid was vibrated �8,9�; periodic fingering was clearly
visible, whose origin was puzzling. The thermal boundary
layer �noted TBL in the following� is the region near the cell
wall where the temperature gradient forms under a heating or

cooling process. As outlined in the Appendix, the phenomena
inside the TBL are indeed particularly important in the ther-
malization process of near-critical fluids.

In this paper, we present some fingering experiments and
perform a set of numerical simulations that show that this
instability is a Rayleigh vibrational instability as described in
Ref. �10�. The instability originates in the TBL itself, as for
the classical Rayleigh-Bénard instability in supercritical flu-
ids �11�.

II. EXPERIMENT

The observations were made when temperature was
quenched down in experiments dedicated to study phase
transitions under vibration. The fluid is submitted to a linear
harmonic translational vibration in the x� direction, the latter
perpendicular to the cylindrical axis �Figs. 1 and 2� as

x� = A� cos��t�, �1�

where A� is the vibration amplitude �typically 0.1–0.5 mm�
and ��=2�f� is the angular frequency, with f� the frequency
�typically 10–60 Hz�. �All quantities with a prime stand for
dimensional quantities�.

The first set of experiments was concerned with a sample
of hydrogen �H2� at critical density. The cell is made with
sapphire. The gravity effects are compensated by a magnetic
field gradient �12�. The critical coordinates are Tc�=33.24 K,
pc�=1.298 MPa, and �c�=30.09 kg m−3. This experiment was
carried out in a cylindrical sample of 3 mm diameter and
3 mm thickness. Due to eddy currents, the temperature could
not be directly measured and temperature stabilization could
not be maintained for more than a few seconds. During the
quench down from �T�c+3 mK to �T�c+2 mK, the TBL
was always destabilized as shown in Fig. 1. Periodic fingers
formed, with a mean distance ��. Fuzzy fingers, out of the*sakir.amiroudine@angers.ensam.fr
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focal plane, can also be detected, with the same �� value. We
cannot measure the distance between neat and fuzzy fingers,
but it must be lower than the cell thickness.

The second set of experiments was carried out with a
carbon dioxide �CO2� sample filled at critical density in a
sounding rocket �MAXUS 7, launched on May 2, 2006 in
Esrange, Sweden�. Details can be found in Refs. �3,9�. The
critical data are in Table I. A thermostat containing the
sample cell is vibrated by a shaker. The thermostat has tem-
perature accuracy on the order of 0.5 mK. The shaker can
apply linear harmonic vibrations in the range A�
=0.2–2.5 mm and f�=0.5–50.5 Hz. The cell body is made
with copper-beryllium. A cylindrical hole of 10 mm diam-
eter, closed at each end by two parallel sapphire windows
separated by 2.189 mm, contains the fluid. When quenching
down to Tc�, the same kind of fingering as in H2 was observed
�Fig. 2�, with also fuzzy, out of focal plane fingers, which
show the same �� value. As for H2, we cannot measure the
distance between neat and fuzzy fingers, but it must be lower
than the cell thickness.

III. MATHEMATICAL MODEL

We consider a square cavity �Fig. 3� of side length H� that
contains supercritical CO2 and is subjected to horizontal vi-
bration in the x� direction, as shown in Fig. 3, with given
amplitude A� and frequency f�. We assume weightlessness
conditions. The fluid is initially maintained at a temperature
T0�, then the temperature of the walls is lowered by an
amount �T��T0�−Tc�. It was verified that quenching up gives
results similar to quenching down, then all further studies
will be only concerned with the boundaries submitted to a
quenching down, as in the experiments. The density field is
determined by the equation of state �see Sec. III A below�.
The pressure field is initially uniform.

A. Dimensionless equations

Our model is based on a Newtonian, compressible, vis-
cous, supercritical fluid that conducts heat and is expandable
in a nonstationary state. The dimensionless quantities are de-
fined as follows: density �= ��

�c�
, pressure p= p�

�c�c�2 , temperature

y’

x’

�’

FIG. 1. Experimental observation of boundary layer fingering
�arrows� in a cylindrical cell filled with H2 under vibration �white
arrow� A�=0.4 mm, f�=50 Hz when the boundary temperature is
lowered from �Tc�+3 mK to �Tc�+2 mK. The mean distance be-
tween the fingers is ���0.8 mm. Gravity was compensated by a
strong magnetic field gradient as in Ref. �12�. Fuzzy fingers can
also be detected, with the same �� value.

y’

x’

FIG. 2. Experimental observation of boundary layer fingering
�arrows� in a cylindrical cell filled with CO2 under vibration �white
arrow� A�=0.3 mm, f�=20 Hz when the boundary temperature is
lowered to Tc�. The mean distance between the fingers is ��
�0.3 mm. Fuzzy fingers can also be detected, with the same ��
value. �MAXUS 7 sounding rocket, launched on May 2, 2006 in
Esrange, Sweden�.

TABLE I. Useful thermophysical data of CO2 and Cu-Be.

CO2 Cu-Be

Tc� �K� 304.13

�c� �kg m−3� 468 8200

Pc� �MPa� 7.37

�P� �K−1� 1.1	10−3 
−1.24

�T �Pa−1� 6.415	10−9 
−1.24

��P�I�T�� �Pa K−1� 1.70	105

CV� �J kg−1 K−1� 1566
−0.11−1400

C�p �J kg−1 K−1� 120.53
−1.24 419

c� �m s−1� 160
−0.055

�0–Cp� /CV� 7.69	10−2 
−1.13

DT� �m2 s−1� 5.997	10−8 
0.67 0.34	10−4

� �m2 s−1� 9.0	10−8
−0.04

�� �W m−1 K−1� 3.38	10−3 
−0.567 117

Pr=� /DT� 1.5 
−0.71

x’

y’

T’1= T’0 - �T’

T’0= (1+�)T’c

T’1 =
T’0 -�T’T’

1
=T
’ 0
-�
T’

A’, �'

H
’

H’

T’1= T’0 - �T’

FIG. 3. Geometry of the numerical model. The cell is filled with
supercritical CO2 at critical density. Vibration �amplitude A�, angu-
lar frequency ��� is imposed along the x� axis. The cell is initially
at T0�, then the temperature is lowered by �T� on each wall
simultaneously.
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T= T�
Tc�

, space variables x� = x��
H�

, y� = y��
H�

, velocity V� = V� �
c�

, and time

t= t�
ta�

.

Here t� is time, ta�= H�
c�

is the acoustic time scale, and c� is
the sound velocity derived from the generalized Mayer equa-
tion

c� =�pc�

�c�
� pc���

2

�c�Cv�Tc�
+

1

�T
� , �2�

where ��=
Tc�

pc�
� �p�

�T�
���, �T=�T�

� �c�c�2 is the nondimensional iso-
thermal compressibility and Cv� is the heat capacity at con-
stant volume. The values of the above thermophysical prop-
erties correspond to the experimental data of CO2 �Table I�.

The dimensionless equations in weightless conditions can
then be written as follows:

��

�t
+ � · ��V� � = 0,

�	 �V�

�t
+ �V� · �� �V�
 = − �� p +

1

Re
	�V� +

1

3
�� ��� · V� �


+
1

Fr
2� sin��t�i�,

�� �T

�t
+ V� · �� T� = �PEcT

dp

dt
+

1

Re Pr
�� · ��� T� +

Ec

Re
� ,

� = �0 + �T�p − p0� − �P�T − T0� . �3�

Here � is the nondimensional dissipation rate defined as �
=Vi,jVj,i+Vi,jVi,j −

2
3Vi,iVj,j. The Einstein summation conven-

tion on repeated indices is applied. The dimensionless coef-
ficients appearing in the above equations are Frv= c�

�H��A��2�
�vibration Froude number�, Pr= �

DT�
�Prandtl number�, Re

= H�c�
�

�Reynolds number�, Ec= c�2

Cp�Tc�
�Eckert number�, �P

=�P�Tc� �thermal expansion coefficient�, �=��ta� �dimension-
less pulsation�.

All the above dimensionless parameters are thus defined
with respect to the supercritical physical properties and de-

pend on only one control parameter 
=
T�−Tc�

Tc�
, which corre-

sponds to the proximity to the critical point. The last equa-
tion in the system �3� corresponds to the equation of state. It
is assumed to be linear �13,14� as the relative temperature
difference �T��T0�−Tc� �in the following �T�=0.1�T0�−Tc���.
The thermophysical properties �T and �P can thus be as-
sumed constant and evaluated at the initial state.

B. Numerical approach

Performing simulations near a critical point needs very
long computational times. The reason comes from the fact
that the properties vary considerably and the piston effect
time scale reaches the acoustic time scale �acoustic satura-
tion, see Ref. �15��. The compressibility becomes very large
and solutions become numerically unstable. In order to re-

main within reasonable limits of costs, efforts, and time, we
thus considered a two-dimensional simulation that we expect
to capture the main features of the phenomenon. We thus
assume implicitly—as is often the case �see, e.g., Ref.
�10��—that the most instable mode in 2D is the same as in
3D. Note that the experiments were performed with a cell
aspect ratio �thickness/diameter� of order 1 �H2� and 0.2
�CO2�. It can then be reasonably claimed that at least the
behavior in CO2 can be described by a 2D simulation. Nev-
ertheless, when looking carefully to the experiments in Figs.
1 and 2, fuzzy fingers are observed, which are not located in
the focal plane. This is in agreement with the fact that the
finger mean distance is smaller than the cell thickness. As the
wavelength of neat and fuzzy fingers is the same, we can
thus reasonably expect that 3D effects, although real, do not
considerably affect the phenomenon in a section plane per-
pendicular to the cell axis.

The Navier-Stokes equations coupled with the energy and
the equation of state and with the initial and boundary con-
ditions are solved with a finite volume method by using the
Simpler algorithm �15–17� in a staggered mesh. The space
discretization uses the power-law scheme and time discreti-
zation is of first-order Euler. The time step is 10−3 s. In order
to obtain the closed set of equations for average fields �as
used in Ref. �10��, the vibration period has to be small with
respect to all the characteristic time scales. In our case the
period is 0.05 s, a time that is much smaller than the differ-
ent characteristic time scales �see Table II�, except the acous-
tic time scale which remains even smaller than the time step.
The simulations are thus consistent with a time-averaged for-
mulation as developed in Ref. �10�. The numerical code has
been tested and used for many applications such as Bouss-
inesq fluids, perfect gases, and highly compressible condi-
tions �near-critical fluids� �14,15,17�. The grid size effect has
been carefully tested. The viscous boundary layer thickness

is of the order of �vib=�2�
��

�46 �m for f�=20 Hz. The ki-
nematic viscosity is almost constant because the shear vis-
cosity �� exhibits a very low divergence ���
−0.04. In all
the studied cases, the nonuniform mesh has 80	80 points
and the first point of the mesh is at about 14.3 �m. The
integral form of the finite volume equations �which corre-
sponds to the weak formulation� is, however, sufficient for
filtering the above equations and getting numerical stability

TABLE II. Different characteristic times as a function of tem-
perature: Piston effect time scale, tPE� , thermal diffusion time tD� , and
the vibration periods. The viscous time scale is about t��22 min
and the acoustic time scale is on the order of ta��0.6 �s.

T�-Tc� tPE� �
tD�

�0
2 tD� =

H�2

DT�
tvib�10 Hz tvib�20 Hz tvib�80 Hz

30 K 11 min 8 s 2 h 11 min 0.1 s 0.05 s 0.0125 s

3 K 38.8 s 10 h 14 min

2 K 22.5 s 13 h 25 min

1 K 8.68 s 21 h 21 min

0.3 K 1.58 s 47 h 50 min

0.1 K 0.32 s 99 h 52 min
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even for time steps much larger than the acoustic time scale
�14�.

IV. RESULTS AND DISCUSSIONS

The experimental setup consisted of thin cylindrical cells.
However, in the numerical simulation, we have considered a
2D square cavity �Fig. 3�, with side H�=10 mm, submitted
to a permanent vibration of 0.5 mm amplitude and 20 Hz
frequency. This choice was dictated by the simpler situation
and an easy comparison with already existing approaches
�10�. It is anticipated that the results of the simulation will
remain applicable, at least qualitatively, to the experimental
cylindrical geometry. A detailed discussion of the compari-
son square–circle is given below in Sec. IV B. Some trials
have been performed with rectangular cells with different
aspect ratio 10 mm	5 mm and 5 mm	10 mm. The results
were not significantly different. The temperatures investi-
gated are T0�−Tc�=30, 3, 2, 1, 0.3, and 0.1 K. The corre-
sponding quenches are 3, 0.3, 0.2, 0.1, 0.03, and 0.01 K,
keeping constant the ratio �T�= �T�−Tc�� /10.

A. Observation

The numerical simulations give the same qualitative re-
sults as in the experiment. Figure 4�a� shows the time evo-
lution of the temperature field. One can see the development
of instabilities which occurs only in the horizontal bound-
aries, exactly as in the experiments �Figs. 1 and 2�. Note that
the wavelength does not change appreciably with time. In
Fig. 4�b� are shown the patterns of the temperature field at
different times and temperatures. The wavelength is seen to
change with temperature with the closer the temperature to
Tc, the smaller the wavelength.

We arbitrarily define the TBL thickness as the distance
where the temperature reaches the uniform bulk temperature.
The evolution of the thickness of the TBL before destabili-
zation is shown in Fig. 5 during a quench of �T�=0.1 K from
T0�−Tc�=1 K. Keeping in mind the approximate definition of
the layer thickness in the numerical experiment, the data
compare very well with the classical diffusion growth law

�BL� = 2��DT�t�. �4�

Here DT� is the thermal diffusion coefficient, which goes to
zero with 
 as

DT� � 
0.67. �5�

B. Analysis

The fingers that develop in the horizontal boundaries per-
pendicular to the vibration direction can be understood as a
vibrational thermal instability �10�, similar to a Rayleigh-
Bénard instability �11,18,19�. Classically, the latter is con-
cerned with a fluid layer confined between two horizontal
isothermal walls separated by a length e� and submitted to
gravity. The bottom wall is hotter than the top wall; the tem-
perature difference is �T�. The Rayleigh-Bénard convection
threshold is defined in terms of the Rayleigh number

Ra = g�
�P��T�e�3

�DT�
, �6�

where g� is the earth acceleration of gravity. The fluid be-
comes unstable when Ra�Rac�1700, where Rac is the
critical Rayleigh number for the case of infinite solid-solid
walls. A physical meaning of the Rayleigh number can be
found by following a simple reasoning. Under earth gravity,
a fluid element of size r0� starts to rise when the typical con-
vective time across the fluid element is shorter than the dif-

fusion time to the surface, that is
r0�

Vsg�
�

r0�
2

DT�
. Here Vsg� is the

Stokes convective velocity as given by

FIG. 4. �Color online� �a� Evolution of the numerical tempera-
ture field as a function of time for CO2 in a square cell of 10 mm
length when submitted to a temperature quench from Tc�
+3 K to Tc�+2.7 K. �b� Temperature profiles at different initial tem-
peratures T�−Tc�=30, 2, 0.3 K, with respective quenches of 3, 0.2,
and 0.03 K and at different times 30, 26, and 32 s. Vibration �ar-
row�: amplitude 0.5 mm, frequency 20 Hz.

FIG. 5. Evolution of the thermal boundary layer thickness �BL� at
T�−Tc�=1 K after a quench �T�=0.1 K �log-log plot�. Vibration:
A�=0.5 mm, f�=20 Hz. Circles and interrupted line: numerical
data. Full line: 2��DT�t�.
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Vsg� =
2r0�

2���g�

9�c��
=

2r0�
2g��P��T�

9�
. �7�

The equation ���=�c��P��T has been used. The Rayleigh
number gives then a measure of the ratio of both diffusive
and convective times.

When the temperature T� approaches the critical tempera-
ture Tc�, Ra diverges and the fluid becomes extremely un-
stable. However, owing to the thermal characteristics of the
Piston effect �see Appendix A�, the temperature gradient
forms only in the thermal boundary layer �11�. A simple
means to account for this new situation is to replace e� by
�BL� , whose evolution is temperature dependent through DT�
�see Eq. �4� and Table I�:

�BL� � �T� − Tc��
0.335. �8�

A saturation of the instability takes place because the fluid
becomes compressed under its own weight. Another instabil-
ity occurs, corresponding to the gradient that is obtained by
adiabatically rising up a fluid particle along the hydrostatic
pressure gradient, leading to the so-called Schwarzschild cri-
terion. This notion is commonly used in atmospheric science
�20�. In weightlessness, neither the Rayleigh-Bénard nor the
Schwarzschild criteria are applicable anymore, but the fluid
remains sensitive to vibrations. Vibrations induce different
velocities to density inhomogeneities by inertial effects.
Mean flows can be provoked and, as in the thermal configu-
ration of the Rayleigh-Bénard case, a vibrational Rayleigh
number can be constructed as �10�

Ra =
�A����P��T�e��2

2�DT�
. �9�

The physical meaning of this vibrational Rayleigh number
can be found by following the same reasoning that leads to
the definition of the classical Rayleigh number. The criterion
for buoyancy-driven convection can be replaced by the pres-
ence of a Bernoulli-like pressure difference coming from the
velocity difference �V� between the fluid element and its
surrounding, �p���c��V�2=������ /�c��

2 A�2�2�. It results in
a driving force r0�

2�p�, oriented perpendicularly to the vibra-
tion direction. Applying the same procedure used to define
the Rayleigh number, another number is obtained, the vibra-
tional Rayleigh number �see Eq. �9��.

Convection starts for Ra above a critical number Rac
.

According to the reasoning developed above where the Ber-
noulli pressure drives the convection perpendicular to the
vibration direction, the onset of instability will crucially de-
pend on the angle �� between the vibration and the tempera-
ture gradient direction. When ��=0, the pressure difference
drives any inhomogeneities along the temperature isotherms.
The fluid is thus stable, Rac

=� �for small ��, the asymptotic
form is Rav��−4 �10��. When �� increases to � /2, Rac
decreases to a value of the order of 2100, which is compa-
rable to the classical critical Rayleigh number in the
Rayleigh-Bénard configuration. Note that the variation of
Rav becomes steep for ����0��50° –60° �10�. This angle
determines indeed the limits of the fingering pattern in Figs.
1 and 2 �Fig. 1: �0��40°; Fig. 2: �0��53°�. In other words,

the equivalent square cell of a circular cell of radius R�
would have a side length H��R�.

The critical value Rac
=2100 corresponds to the case of a

vibrated layer in contact on both sides with infinite walls of
much larger thermal conductivity than the fluid. The above
condition is always met on the solid wall �Table I�: the
Cu-Be wall conductivity �117 W m−1 K−1� is always larger
than the CO2 conductivity, although diverging. �At a tem-
perature as small as T�−Tc�=1 �K, �CO2

� =8.6 W m−1 K−1.�
However, it is clear that Rac

should differ from 2100 in the
present situation where only one finite solid wall is present.
This point was already noticed in Ref. �10� in nonstationary
states when the Prandtl number Pr=� /DT� takes large values.
This situation is precisely met here �see Table I� and means
that the instability indeed develops in the TBL during the
transient. In addition, the fluid conductivity in the boundary
layer and in the bulk varies much when going to Tc �it di-
verges, see Table I�, then the Rac

value should also vary
with T−Tc.

Because of mass conservation, convection rolls eventually
form �such rolls have been observed in the simulations on
2D incompressible and inviscid fluids �10��. From the tem-
perature dependence of �P� , v�, and DT� �Table I�, one gets

Rav � �T� − Tc��
−3.11��T�e��2 � �T� − Tc��

−1.11e�2. �10�

From Eq. �9� and the expression �BL� �Eq. �4��, it comes that

Rav =
�A����P��T��BL� �2

2�DT�
=

2�2�A����P��T��2t�

�
, �11�

which shows that, at constant temperature, Rav increases pro-
portionally with time. At given �constant� time, Rav increases
when going near Tc� as

Rav � 
−0.44. �12�

The time t�= tc� where the instability starts can be determined
from the simulations. When reported in Eq. �11�, it thus gives
the critical Rayleigh number Rac

. The corresponding values
are reported in Fig. 6. It is clear that Rac

increases strongly
when approaching Tc�, as

Rac
= R1,2
−m. �13�

Two limiting behaviors can be fitted to the two following
power laws: near Tc�, R1= �0.95�0.70�	103 with m1
=0.86�0.1 and far from Tc�, R2= �26�8�	103 with m2
=0.31�0.06 �the uncertainties correspond to one standard
deviation�. The temperature variation of Rac

is not surpris-
ing, as discussed above. It can be attributed to the changes of
thermal conditions throughout the thermal boundary layer
and the bulk fluid. The exact determination of its temperature
dependence needs a full linear stability analysis and is out of
the scope of the present study.

Figure 7 displays a typical evolution of the temperature
field as a function of x� near the bottom wall. After an initial
state �about 20 s that corresponds to a transient regime�, the
wavelength keeps almost constant, which permits one to de-
termine it without ambiguity. The wavelength can then be
evaluated under these two conditions: �i� after the initial tran-
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sient regime and �ii� in the middle of the x� axis, in order to
get rid of the boundary effects.

In Fig. 8 is reported the evolution of the wavelength �� as
a function of temperature for various numerical simulations.
�� decreases with temperature, as already observed in Fig.
4�b� and can be fitted to the two power laws

�� = �1,2� 
n1,2. �14�

Near Tc�, �1�= �2.32�05� mm with n1=0.06�0.03 and far
from Tc�, �2�= �4.5�0.08� mm with n2=0.172�0.005 �the
uncertainties correspond to one standard deviation�. If one
assumes that, as for the Rayleigh-Bénard instability, ����c�
at the threshold, one gets from Eq. �11�:

�� � �c� �
�2�DT�Rac

A����P��T�
� 
ni �15�

that should go to zero with the exponent ni=
1.11−mi

2 . Taking
into account the two exponent values mi=m1 or m2 it comes,
near Tc�, n1=0.12 and far from Tc�, n2=0.4. The exponent
value is, alike the experimental exponent, larger far from Tc�
than close to Tc�. The values, however, differ by about a
factor 2, a result that reflects the limits of this simulation
�2D� and the assumptions made concerning the similarity of
a two-conductive walls Rayleigh-Bénard arrangement with
the thermal boundary layer configuration.

V. CONCLUDING REMARKS

A general issue to manage fluids in space might be the use
of high frequency, low amplitude vibrations that act as an
artificial gravity. In this exploratory study we were more par-
ticularly concerned with thermovibrational convections. Ex-
periments carried out in a weightless environment have
shown surprising periodic fingering at the boundary of a vi-
brated supercritical fluid submitted to a temperature quench.
The present numerical simulation, although only 2D, exhibits
similar behavior, which can be explained in terms of a Ray-
leigh thermovibrational instability. The associated critical vi-
brational Rayleigh number is seen to diverge near the critical
point while the instability wavelength goes to zero when
nearing Tc. Further work is planned to better describe and
understand this instability.
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APPENDIX

When heating or cooling the wall of a cell containing a
fluid, a thermal boundary layer �TBL� forms, of thickness ��:

� � �DT�t�. �A1�

In near-critical fluids, this thickness develops very slowly
since DT� goes to zero at Tc�. The thermal expansion coeffi-
cient diverges, strongly expanding the TBL �or contracting
when cooling�. Large density gradients form in the TBL al-
though the temperature gradients stay very small. This ex-
pansion �or contraction� is at the origin of a very efficient
mechanism of temperature equilibration, the “piston effect”
�21–25�, where the TBL expands and pressurizes the whole

sample. It results in a fast and uniform temperature rise in the
bulk. In contrast to the well-known “critical slowing down”
due to the vanishing thermal diffusivity, this process results
instead in a “critical speeding up” of thermalization.

When a temperature quench is applied to the wall of the
cell, the temperature in the bulk, Tb�, relaxes from its initial
temperature T0� towards the final temperature of the wall Tf�
as �24,25�

Tb� − Tf� � � t�

tPE�
�−1/2

, �A2�

with TPE� is the piston effect typical time

tPE� =
L�2

DT���0 − 1�2 �
L�2

DT��0
2 . �A3�

Here, L� is a typical cell length scale and �0 is the ratio of the
specific heats at constant pressure and volume that diverges
near the critical point as �0�
−1.13. Then TPE� tends to zero
when T� tends to Tc� as tPE� �
1.59.
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